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Abstract 

A series of tests focusing on the frequency content and transient 
characteristics of the electromagnetic emissions from three different boat 
engines was performed at the Patuxent Naval Air Station. The transient 
emissions were compared with respect to engine rpm, amplification, 
orientation, shielding and against emissions from an engine of the same 
model. It was found that engine models can be identified according to 
their frequency content. 
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Introduction 

This report describes an experimental effort to utilize electromagnetic (EM) 
emissions from boat engines for identification purposes. A series of tests 
were conducted at Patuxent River Naval Air Station with three different 
boat engines. The results were evaluated for frequency content and tran- 
sient characteristics. The goals of this effort were (1) to characterize a signal 
source by performing near-field measurements with insignificant back- 
ground noise; (2) to take absolute measurements (as a function of range and 
orientation) under varying operating conditions; (3) to identify spectral fin- 
gerprints; (4) to measure three specific signals of interest for government 
furnished equipment; and (5) to identify methods that could be used to 
reduce the signal strength. 



Experimental Setup 

To study EM emissions from boat engines, field tests were conducted at the 
St. Igno's campus of the Patuxent River Naval Air Station on the St. Mary's 
River. We collected engine data from three different boats (figure 1): 

• NESEA with dual 502 hp chevy inboards, 

• Yamaha 200 hp outboard, and 

• Dual 150 OMC. 

The experimental setup consisted of the following components (figure 2(a)): 

• Tektronix SCD 1000 (>1 GHz bandwidth) transient digitizer, 

• RG-223 delay line, 

• EMCO double-ridge waveguide horn with factory calibrated fre- 
quency range of 200 MHz to 2 GHz, a Picosecond Pulse Laboratory 
3528 wideband amplifier, and 

• Laptop computer. 

The delay line was included so that the SCD 1000 could be triggered into a 
state of readiness before the arrival of the signal to be digitized and recorded. 
In other words, the incoming signal, after passing through the amplifier, 
was split. One half traveled down the trigger line directly to the SCD 1000 
and triggered it. The other half traveled down the signal line and was de- 
layed by 47 ns. When it arrived at the digitizer, the digitizer was ready to 
process it. 

A photo of the actual experimental setup at the field site appears in 
figure 2(b). The horn was calibrated for amplitude and phase as a function 
of frequency separately in the Army Research Laboratory (ARL) anechoic 
chamber for wider-band usage than factory intended. The resulting gain 
curve is shown in figure 3. The horn is visible in the background of figure 2(b). 

Figure 1. Three test 
boats: (a) Yamaha 200, 
(b) NESEA, and (c) 
dual 150 OMC. 



Figure 2. The (Q) 
Experimental Setup: 
(a) schematic diagram 
(b) out at field site. 
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Before any meaningful data could be acquired on the targets, we had to 
determine the environmental background noise. Data was collected in all 
four quadrant directions—at 65°, 155°, 245°, and 335° with respect to true 
north. Each direction lagged the previous one by 90°. Plots of the back- 
ground noise appear in figure 4. Data was collected for 2 min in each 
direction. 
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Figure 4. Environmental Background Noise at (a) 245°, 6 mV; (b) 65°, 6 mV; (c) 335°, 4 mv; and 
(d) 155°, 12 mv. 

Table 1 displays all the data sets collected during the field test. The first four 
data sets (pl-4) contain background noise in the four different directions 
just described. The next group of data sets (pbl-5a) was collected from the 
Yamaha engine. The data set pnel was collected from the NESEA. The final 
group of data sets (pbl 1-12) was collected from the dual 150 OMC. 

The information in table 1 is organized into the following eleven columns: 

1. Lists the data set series names. 

2. States the trigger level the SCD 1000 was set to. 

3. Lists the time delay in the delay line for each run. 

4. Lists the internal delay. 



5. Lists the boat position. 

6. Indicates whether the wideband amplifier was in operation during 
the run. 

7. Provides commentary about what is stated in the "boat position" 
column. 

8. Provides an informal name for a particular boat. 

9. Lists how many shots or waveforms are recorded in each data set. 

10. States the day in June 2000 on which the test was run. 

11. Lists the frequency component in the engine EM transient that had 
the highest amplitude. 

Table 1. Data sets collected during field tests. 
series 
name 

mV        (ns) 
trig lev del line 

pbll 
pbl2 
pbl2a 
pbl3 
pbl4 
pbl5 
pbl6 
pbl7 
pbl8 
pbl9 
pbllO 
pblll 
pbll2 

int 
del 

boat 
position amplifier comment boat 

# 
shots Jun-00 freqpk 

pl 1 10 0 245 direction of walkaways pleasure 30 27 433 
P2 1 10 0 155 towards radar tower pleasure 30 27 433 
p3 1 10 0 65 towards coast guard station pleasure 30 27 221 
p4 2.5 10 0 335 end of pier pleasure 30 27 948 
pbl 10 10 0 dockside pleasure 50 27 
pb2 10 0 dockside pleasure 50 27 242 
pb2a 10 0 dockside pleasure 50 27 369 
pb3 50 10 0 pull away (2) .21 mi range pleasure 100 27 383 
pb4 10 0 high speed circle (19) pleasure 100 27 403 
pb5 3 30 0 sweep (6) 1 sweep is back and forth pleasure 36 27 262 
pb5a 3.5 10 10 sweep (6) amp pleasure 114 27 938 
pnel 5 10 10 high speed circle (15) .4 mi range,reduced speed after 66 nesea 107 27 393 
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30 20 sweeps (10) 
30 20 starboard dockside 
30 20 portside 
30 20 portside 
30 20 portside 
30 20 portside 
30 20 portside 
30 20 portside 
30 20 portside 
30 20 portside 
30 20 portside 

.22 mi range 

port engine only 
idle/4k rpm alternate 
starboard only 
alternate 
pretrigger definition 
Al line 
hi rev 
lower trig lev 

whaler 
whaler 
whaler 
whaler 
whaler 
whaler 
whaler 
whaler 
whaler 
whaler 
whaler 
whaler 
whaler 

105 
116 

108 

50 

50 

50 

50 

50 

50 

40 

50 

50 

50 

27 

28 

28 

28 

28 
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Note: The first four entries in column 5 are the number of degrees off of true 
north for the environmental noise measurements. For the three boats, there 
are various entries. "Dockside" indicates the boat remained stationary at 
dockside. "Pull away" indicates the boat traveled in a perpendicular direc- 
tion away from the dock "Speed circle" denotes traveling in a circle 
(figure 5(a)). The diameter of a circle for a given run is listed in the com- 
ment column. Its point of closest approach is 10 ft from the dock. For in- 
stance, the pbll run has ".22 mi range" for its comment; therefore it 
traveled in a circle with a diameter of 0.22 mi. "Sweep" refers to traveling 
back and forth along a line (figure 5(b)). The number in parenthesis to the 
right of a maneuver indicates the number of times it was executed. "Star- 
board" or "portside" for the dual 150 OMC indicates which of the two en- 
gines was running (figure 6). 

Figure 5. Two boat 
courses close to dock: 
(a) sweep circle, and (b) 
sweep. 

(b) 

Dock 

Figure 6. Dual 150 hp 
OMC outboards. 



Results 

This section compares the differences in transient emissions due to several 
parameters. These comparisons include finite range of transient, variations 
due to engine rpm differences, two-of-a-kind of the same engine model, 
angular dependence of received transient, and shielding effectiveness. 

Figure 7 compares the starboard and port-side engines for the OMC. Note 
that the starboard-side voltage plot has a vertical scale of 100 mV/div, and 
the port-side voltage plot has a vertical scale of 50 mV/div. The port engine 
amplitude is about one-half that of the starboard engine. The frequency 
amplitudes of the two engines are similar. 

In comparing the starboard and port sides of the Yamaha, we see that they 
both have a frequency peak at 250 MHz, but otherwise we need to collect 
more data to do a good comparison. Note that the voltage plots in figure 8 
(a) and (b) have a vertical scale of 50 mV/div. 

The plots in figure 9 provide the results of two sweep runs that were iden- 
tical, except that the run represented in (a) employed no amplification 
whereas that in (b) did. The amplification introduced some noise, as can be 
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Figure 7. Comparison of amplitude and frequency for (a) starboard and (b) port Engine for OMCs. 
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Figure 9. Comparison of shot signal (a) without amplification and (b) with amplification. 

observed by comparing the voltage plots. This was to be expected. The 
amplifiers also invert the signal. Another result is that amplification made 
some of the higher frequency components more visible on the linear scale. 
Without amplification the frequency curve extended out to about 900 MHz, 
whereas with amplification it extended out as far as approximately 1.3 GHz. 

We next compare the OMC engine at idle with that engine at high revolu- 
tion (figure 10). The idling engine has a voltage amplitude an order of mag- 
nitude larger than that of the high revolution engine in the first 20 ns and 
then settles down to a lower amplitude, in the subsequent 20 ns, that is 
close to that of the high revolution engine. The idling engine has a frequency 
spectrum extending out to 2.5 GHz, but the frequency spectrum of the high 
revolution engine has a much narrower frequency spectrum. Its spectrum 
has no components above 450 MHz. 

Next, let us confirm that voltage and frequency plots from different boat 
engines are easy to distinguish from each other. By the same token plots of 
the same boat engine but from different shots should look very much alike. 
A comparison of figures 11,12, and 13 shows that this is, in fact, the case. 

If a means of spotting a boat by the EM radiation from its engine is devel- 
oped, those traveling on such boats may try to conceal the engine by utiliz- 
ing shielding. The OMC engine was lined with aluminum foil to provide it 
with electrostatic shielding. The effect of shielding appears in figure 14. The 
foil attenuated the emissions by 14 dB. The frequency components in the 
energy spectrum above 500 MHz were attenuated even more. 

Appendix B contains slides with plots displaying the results of all except 
two runs. Each slide with plots represents the results of one run. One plot is 
a "waterfall" plot, which is a composite of all the shots comprising the rim. 
Each waveform in the waterfall is a plot of voltage vs. time. 
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Figure 10. Comparison of an engine (a) at idle (b) with high revolution. 
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Figure 11. NESEA plots showing the energy spectrum and voltage for two independent shots. 
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Figure 12. Yamaha 200 plots showing the energy spectrum and voltage for two independent shots. 
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Figure 14. The EM emissions of the OMC engine (a) without foil and (b) with foil. 

The upper right-hand plot in each slide is a semi-log scatter plot of ampli- 
tudes. The horizontal axis represents frequency in MHz, and the vertical 
axis represents amplitude in joules/Hz. The Fast Fourier Transform (FFT) 
of each of the waveforms in the waterfall is computed. From this FFT, the 
three highest amplitude peaks are selected. Each of these peaks is repre- 
sented by one point on the scatter plot. 

To make better sense of the data presented in the scatter plot, a histogram of 
the same data is plotted directly below the scatter plot. The frequency range 
along the horizontal axis is divided into bins. Each bin represents a range of 
frequencies. Each bin is equal in width. The frequency width of the bin in 
MHz appears above the histogram plot along with the number of shots for 
that rim. The height of the histogram bar in a given bin represents the num- 
ber of shots that had a top-three frequency in the frequency range repre- 
sented by that bin. hi the upper right-hand corner of the histogram the three 
most common frequency peaks are listed in numerical order. To the right of 
each frequency is the percentage of times that it was one of the top three 
frequency peaks of a shot. 
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The frequency peak data is summarized in figure 15. The plot on the left 
summarizes data collected from the Yamaha. This plot is based on data from 
all runs—dockside, pull-away, sweep and speed circle. The various frequen- 
cies are marked according to how often they occurred in all of the Yamaha 
runs. A blue diamond indicates that a frequency was the most common 
frequency peak in a run; a maroon square indicates a frequency was the 
second most common; and a yellow triangle indicates the third most com- 
mon. Ovals highlight the frequencies with the most peaks in all the runs 
put together. There was a total of seven Yamaha runs. In some of these runs 
there was no third frequency peak, which accounts for the fact that there 
are only four triangles on this Yamaha plot. The frequencies with the most 
peaks for the Yamaha are 265, 220, and 240 MHz. 

We applied the same analysis to the OMC frequency data, as is shown in 
the right plot of figure 15. Here the frequencies with most peaks are 300, 
360, and 580 MHz. The frequency peaks from eleven runs comprise this 
plot. Only the pre-trigger and low trigger level runs were omitted. 

Appendix A contains a sample waveform from each of the data sets. The 
upper plot in each slide is a plot of the sample signal itself (chosen because 
it is typical of the 50 or so waveforms that make up the data set). The lower 
plot is the FFT of the upper plot. The FFT allows one to determine the fre- 
quency content of the waveform. We are most interested in determining the 
frequencies present in the waveform with maximum amplitude. The peak 
frequencies stand out clearly in the FFT plots. 

Appendix B contains slides with three figures on each slide that reflect the 
method of analysis performed on each data set. The left-hand plot is a wa- 
terfall plot consisting of a collection of the all the waveforms for that data 
set. The upper right-hand plot is a scatter plot of the frequency peaks for 
each of the shots making up a data set. The number of shots for each data 
set ranges from 36 to 114. The lower right-hand plot is a histogram of the 
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Figure 15. Frequency peak data for (a) Yamaha and (b) OMC. 
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frequency peaks. This enables one to determine the most common frequency 
peak and the number of times it appears in the complete data set. Analyses 
performed in appendix A and B show the principal frequency content ex- 
pected from these targets. 

Appendix C presents the time-frequency analysis of a spectrogram of each 
of the files in the sample library (appendix A). The value of this analysis is 
that it differentiates the waveforms in a manner more striking and clear-cut 
than the time or frequency components alone. 

The Matlab program jtfajtr;mc(filnam,timl/tim2/maxfreq,width/overlap) 
generated the spectrograms in appendix C. Timl is 0 sec, tim2 is 0.1 |Jsec, 
maxfreq is 1.5 GHz, the width of the window was 32 datapoints, and the 
overlap between windows was 6 datapoints. It was necessary to specify a 
maximum frequency of 1.5 GHz or the spectrogram routine would include 
spurious frequencies and aliasing up to 5 GHz because of the oversampled 
waveform. The peak frequencies appear with a reddish hue in a spectro- 
gram. The frequencies with the lowest amplitude are blue. The plot on the 
bottom is the time plot of the voltage, and the upper left plot is a plot of the 
FFT The signal in the spectrograms of pb datasets tend to be 10 ns wide, 
while the signal in the spectrograms of pbl datasets tend towards a width of 
20 ns. The frequency content was analyzed in appendix B. 
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Conclusions 

For both the OMC and Yamaha vehicles, the port and starboard engines 
had similar frequency peaks in their frequency-amplitude plots. Even though 
only two serial numbers were investigated, this leads us to believe that en- 
gine models can be identified through their frequency content for most of 
the serial numbers produced. 

Amplification of a shot appeared to extend the dynamic range of frequency. 
An idling OMC engine has a voltage amplitude an order of magnitude larger 
than that of a high revolution engine at first and then settles down to an 
amplitude close to that of the high revolution engine. The engine at high 
revolution has a much narrower frequency spectrum than when at idle. 

Time and frequency waveforms from different engines are unique and easy 
to distinguish. Time and frequency plots from different shots of the same 
engine look very similar (data is reproducible). This would indicate that 
perhaps time and frequency waveforms are appropriate and practical for 
engine identification. 

Shielding an engine with aluminum foil proved to be inexpensive and ef- 
fective, providing 14 dB of shielding. This would result in a factor of 25 
decrease in power radiating out of the engine cavity. This means an ob- 
server would have to be at one-fifth the previous distance to observe a sig- 
nal with the same amplitude. 

This research project allowed us to compare the differences in transient 
emissions due to several parameters. These comparisons include finite range 
of transient, variations due to engine rpm differences, two-of-a-kind of the 
same engine model, angular dependence of received transient, and shield- 
ing effectiveness. Frequency components of each model type contain sets of 
frequencies that are unique and identifiable. These characteristics have sev- 
eral near-field applications. 

The range of measurements described in this report are all less than a mile, 
although the technique is not limited to these ranges. Solutions to the lim- 
ited range of these measurements are varied. The primary difficulty in time- 
domain transient capture often lies in the triggering capability and trigger 
modes of the recording device. The triggering levels are often dependent 
on the background noise levels and the general noise clutter environment. 
This problem can be alleviated somewhat by a channelized filterbank. By 
splitting the wideband transient into many frequency bands, and time- 
correlating the results of the notched bands, a reliable presence detector 
could be fabricated that would enable signals close to the background noise 
floor to be identified and recorded for analysis purposes. This technique 
permits identification of the background noise, regardless of its level, and 
subsequent identification and detection of the new transient wideband sig- 
nal in the presence of the background noise. Thus a low-level transient can 
be distinguished from background noise this way. 
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Appendix A. Sample Waveforms 

This appendix contains a sample waveform from each of the data sets. More 
than 1500 waveforms were acquired during the investigation. A typical 
waveform from each dataset was identified and displayed in this appendix. 

The upper plot in each slide is a plot of the sample signal itself (chosen 
because it is typical of the 50 or so waveforms that make up the data set). 
The lower plot is the Fast Fourier Transform (FFT) of the upper plot. The 
FFT allows one to determine the frequency content of the waveform. We 
are most interested in determining the frequencies present in the waveform 
with maximum amplitude. The peak frequencies stand out clearly in the 
FFT plots. 

Filenames displayed for each waveform can be identified with particular 
vehicles using figure 5. 
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Appendix B. Method of Analysis 

This appendix contains slides with three figures on each slide that reflect 
the method of analysis performed on each data set. The left-hand plot is a 
waterfall plot consisting of a collection of all the waveforms for that data 
set. The upper right-hand plot is a scatter plot of the frequency peaks for 
each of the shots making up a data set. The number of shots for each data 
set ranges from 36 to 114. The lower right-hand plot is a histogram of the 
frequency peaks. This enables one to determine the most common frequency 
peak and the number of times it appears in the complete data set. 
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Appendix C. Time-Frequency Analysis 

This appendix includes the time-frequency analysis of a spectrogram of each 
of the files in the sample library. The value of this analysis lies in that it 
differentiates the waveforms in a manner more striking and clear-cut than 
the time or frequency waveforms alone. 

The Matlab program jtfajtrune (filnam,timl, tim2/maxfreq/ width,overlap) 
generated the spectrograms in this appendix. Timl=0 (sec), tim2=le-l (|isec), 
maxfreq=1.5e9 (Hz), the width of the window was 32 datapoints, and the 
overlap between windows was 6 datapoints. It was necessary to specify a 
maximum frequency of 1.5 GHz or the spectrogram routine would include 
spurious frequencies and aliasing up to 5 GHz because of the oversampled 
waveform. The program jtfajrunc.m appears in appendix D. 

The peak frequencies appear with a reddish hue in the spectrogram. The 
frequencies with the lowest amplitude are blue. The plot on the bottom is 
the time plot of the voltage, and the upper left plot is a plot of Fast Fourier 
Transform. 

The pb datasets tend to be 10 ns wide while the pbl datasets tend towards 
20 ns in width. The frequency content is statistically analysed in appendix B. 
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Appendix D. Matlab Program 

This is a listing of a Matlab program that generates spectrograms. It permits 
the user to specify a time range in microseconds over which a waveform is 
analyzed, and within that time range specify a window length with the 
amount of overlap between windows. The user specifies a maximum fre- 
quency to eliminate spurious frequencies and aliasing. 

function j tfa_trunc(filnam,timl,tim2,maxfreq,width,overlap) 
%Truncates  frequencies  from spectrogram that do not  exist. 

[x,y,tl,t2,t3,t4]=ascread(filnam); 
if   (nargin>l) %  check  for  timemark  trimming of  signal 

disp(['...jtfa  timl  tim2   ',num2str(timl),'   ',num2str(tim2)]) 
if   (timl~=tim2) 

[x,y]=prepst(x,y,timl,tim2); 
end 

end 

[fl,yf]=fft_ps(x,y); 
nfft=arraylen(y); 
fs=1.0/(x(10)-x(9)); 
[b]=specgram(y,nfft,fs,hanning(width),overlap); 

if   (nargin>l) 
sfl=size(f1); 
nelemorg=sf1(2) 
[fl,yf ]=prepst(fl,yf,min(fl),maxfreq); 
sfl=size(f1) 
nelem=sfl(2) 
elemrat=nelem/nelemorg 
sb=size(b) 
c=ones(fix(sb(l)*elemrat)+1,sb(2)); 
sc=size(c) 
numrows=sc(1) 
for i=l,numrows ;      % vertical matrix cutoff 

c=b(1:numrows,:) ; 
end 
b=c; 

end 

[b]=flipud(b);   % vertically reverse JTF matrix for plotting 

figure % plot 
colormap(jet) 
bmag=sqrt((real(b) .A2) + (imag(b) .A2) ) ; 
subplot (2,2,2) , imagesc (bmag) ; shading (v interp' ) ,-colorbar; 
%subplot (2,2,2) , specgram(y,nf f t, f s,hanning(96) ,32) ,-colorbar 
subplot(2,2,1),semilogy(fl,yf),xlabel('Frequency (Hz) '),grid on,axis([min(f1) 
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max(fl) min(yf) max(yf)]) 
subplot(2 , 2, 4) ,plot(x,y),xlabel('Time (sec)'),grid on,axis([min(x) max(x) min(y) 
max(y)]) 

fig=get(gcf,'child'); 
pl=[.3 .1 .65 .15];p2=[.1 
p3=[.3 .3 .65 .65];p4=[.l . 
set (fig(l), 'Position',pi) 
set(fig(2),'Position',p2) 
set(fig(3),'Position',p4) 
set(fig(4),'Position',p3) 
set(fig(2),'View',[-90,90]) 
set(fig,'Fontsize',11) 
set(fig(2),'yticklabels' 
set(fig(3),'xticklabels' 
set(fig(3),'yticklabels' 
set(fig(4),'yticklabels' 
set(fig(4),'xticklabels' 
set(fig(4),'yticklabels' 

.3 .15 .65]; 

.1 .07 .15]; 
% transient 
% full fft 
%colorbar 
%spectrogram 

suptitle([filnam]) 
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